ISSN 1600-5368

N'-(5-Chloro-2-hydroxybenzylidene)nicotinohydrazide

Chong-Gui Ren

Department of Chemistry and Chemical Engineering, Zaozhuang University, Zaozhuang Shandong 277160, People's Republic of China Correspondence e-mail: renchonggui@163.com

Received 25 May 2009; accepted 2 June 2009

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.003 Å; R factor = 0.049; wR factor = 0.115; data-to-parameter ratio = 15.2.

There are two independent Schiff base molecules in the asymmetric unit of the title compound, $C_{13}H_{10}ClN_3O_2$. The dihedral angles between the benzene and pyridine rings are 12.8 (2) and 1.9 (2)° in the two molecules. Intramolecular O-H···N hydrogen bonds are observed. Molecules are linked into centrosymmetric $R_4^4(26)$ motifs by N-H···O and N-H···N interactions.

Related literature

For the biological properties of Schiff base compounds, see: Jeewoth *et al.* (1999); Ren *et al.* (2002); Eltayeb *et al.* (2008); Sinha *et al.* (2008). For metal complexes of Schiff base compounds, see: Shivakumar *et al.* (2008); Prabhakaran *et al.* (2006); Dhar *et al.* (2005). For related structures, see: Cui *et al.* (2007); Jing *et al.* (2007); Ma *et al.* (2008); Salhin *et al.* (2007); Lin *et al.* (2007); Alhadi *et al.* (2008); Xue *et al.* (2008); Wang *et al.* (2008); Lu (2008); Diao *et al.* (2008); Qiu (2009); Mohd Lair *et al.* (2009*a,b*). For reference structural data, see: Allen *et al.* (1987). For hydrogen-bond motifs, see: Bernstein *et al.* (1995).

Experimental

Crystal data

 $\begin{array}{l} C_{13}H_{10}{\rm ClN_3O_2} \\ M_r = 275.69 \\ {\rm Monoclinic, $P2_1/n$} \\ a = 9.792 \ (2) \\ {\rm \AA} \\ b = 23.358 \ (3) \\ {\rm \AA} \\ c = 10.926 \ (2) \\ {\rm \AA} \\ \beta = 96.848 \ (2)^{\circ} \end{array}$

 $V = 2481.2 (8) Å^{3}$ Z = 8 Mo K\alpha radiation \mu = 0.31 mm^{-1} T = 298 K 0.30 \times 0.30 \times 0.27 mm

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\rm min} = 0.913, T_{\rm max} = 0.921$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.049$]
$wR(F^2) = 0.115$	
S = 1.01	
5342 reflections	
351 parameters	
2 restraints	

14387 measured reflections 5342 independent reflections 3193 reflections with $I > 2\sigma(I)$ $R_{int} = 0.042$

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max} = 0.22 \text{ e } \text{ Å}^{-3}$ $\Delta \rho_{min} = -0.24 \text{ e } \text{ Å}^{-3}$

Table 1 Hydrogen-bond geometry (Å, $^{\circ}$).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1-H1\cdots N1$	0.82	1.88	2.594 (2)	145
O3−H3···N4	0.82	1.82	2.538 (2)	146
$N5 - H5 \cdot \cdot \cdot N3^{i}$	0.891 (10)	2.109 (11)	2.991 (3)	171 (2)
$N2 - H2 \cdots O3$	0.892 (10)	2.097 (10)	2.984 (2)	173 (2)

Symmetry code: (i) -x + 1, -y, -z + 2.

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97*.

The author acknowledges Zaozhuang University for funding this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2215).

References

- Alhadi, A. A., Ali, H. M., Puvaneswary, S., Robinson, W. T. & Ng, S. W. (2008). Acta Cryst. E64, 01584.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cui, J.-C., Pan, Q.-X., Yin, H.-D. & Qiao, Y.-L. (2007). Acta Cryst. E63, 02633. Dhar, S., Nethaji, M. & Chakravarty, A. R. (2005). Inorg. Chim. Acta, 358, 2437–2444.
- Diao, Y.-P., Huang, S.-S., Zhang, H.-L. & Kang, T.-G. (2008). Z. Kristallogr. New Cryst. Struct. 223, 165–166.
- Eltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Adnan, R. (2008). Acta Cryst. E64, 0576–0577.
- Jeewoth, T., Bhowon, M. G. & Wah, H. L. K. (1999). Transition Met. Chem. 24, 445–448.
- Jing, Z.-L., Yu, M. & Chen, X. (2007). Acta Cryst. E63, 04902.
- Lin, X.-C., Yin, H. & Lin, Y. (2007). Acta Cryst. E63, o2864.
- Lu, J.-F. (2008). Acta Cryst. E64, o2032.
- Ma, H.-B., Huang, S.-S. & Diao, Y.-P. (2008). Acta Cryst. E64, o210.
- Mohd Lair, N., Mohd Ali, H. & Ng, S. W. (2009a). Acta Cryst. E65, o189.
- Mohd Lair, N., Mohd Ali, H. & Ng, S. W. (2009b). Acta Cryst. E65, o190.
- Prabhakaran, R., Huang, R. & Natarajan, K. (2006). Inorg. Chim. Acta, 359, 3359–3362.
- Qiu, X.-Y. (2009). Z. Kristallogr. New Cryst. Struct. 224, 109-110.

- Ren, S., Wang, R., Komatsu, K., Bonaz-Krause, P., Zyrianov, Y., McKenna, C. E., Csipke, C., Tokes, Z. A. & Lien, E. J. (2002). J. Med. Chem. 45, 410–419.
- Salhin, A., Tameem, A. A., Saad, B., Ng, S.-L. & Fun, H.-K. (2007). Acta Cryst. E63, 02880.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

- Shivakumar, K., Shashidhar, T., Reddy, P. V. & Halli, M. B. (2008). J. Coord. Chem. 61, 2274–2287.
- Sinha, D., Tiwari, A. K., Singh, S., Shukla, G., Mishra, P., Chandra, H. & Mishra, A. K. (2008). *Eur. J. Med. Chem.* 43, 160–165.
- Wang, X.-Y., Cao, G.-B. & Yang, T. (2008). Acta Cryst. E64, o2022.
- Xue, L.-W., Han, Y.-J., Hao, C.-J., Zhao, G.-Q. & Liu, Q.-R. (2008). Acta Cryst. E64, o1938.

Acta Cryst. (2009). E65, o1505-o1506 [doi:10.1107/S1600536809020819]

N'-(5-Chloro-2-hydroxybenzylidene)nicotinohydrazide

C.-G. Ren

Comment

The Schiff base compounds show excellent biological properties (Jeewoth *et al.*, 1999; Ren *et al.*, 2002; Eltayeb *et al.*, 2008; Sinha *et al.*, 2008). Moreover, the Schiff base compounds have been widely used as versatile ligands in coordination chemistry (Shivakumar *et al.*, 2008; Prabhakaran *et al.*, 2006; Dhar *et al.*, 2005). We report here the crystal structure of the title compound. In the title compound, Fig. 1, there two independent molecules in the symmetric unit. The dihedral angles between the benzene and pyridine rings are 12.8 (2) and 1.9 (2)°, respectively. All the bond lengths are within normal values (Allen *et al.*, 1987) and comparable to those in other similar compounds (Cui *et al.*, 2007; Jing *et al.*, 2007; Ma *et al.*, 2008; Salhin *et al.*, 2007; Lin *et al.*, 2007; Alhadi *et al.*, 2008; Xue *et al.*, 2008; Wang *et al.*, 2008; Lu, 2008; Diao *et al.*, 2008; Qiu, 2009; Lair *et al.*, 2009*a*,b). The molecules of the title compound are linked into centrosymmetric $R^4_4(26)$ motifs by N–H…O and N–H…N interactions (Table 1, Fig. 2) (Bernstein *et al.*, 1995).

Experimental

All the starting materials were obtained with AR grade from Lancaster. 5-Chloro-2-hydroxybenzaldehyde (1.0 mmol, 157.1 mg) and nicotinohydrazide (1.0 mmol, 137.1 mg) were refluxed in a 30 ml methanol solution for 30 min to give a clear yellow solution. Yellow block-shaped single crystals of the compound were obtained by slow evaporation of the solution for five days at room temperature.

Refinement

H2 and H5 were located from a difference Fourier map and refined isotropically, with the N–H distance restrained to 0.90 (1) Å, and with U_{iso} restrained to 0.08 Å². Other H atoms were constrained to ideal geometries, with d(C-H) = 0.93 Å, d(O-H) = 0.82 Å, and with $U_{iso}(H) = 1.2U_{eq}(C)$ and $1.5U_{eq}(O)$.

Figures

Fig. 1. The molecular structure of the compound with 30% probability ellipsoids. The intramolecular O–H…N hydrogen bonds are shown as dashed lines.

Fig. 2. Molecular packing of the compound with hydrogen bonds drawn as dashed lines. Hydrogen atoms not involved in hydrogen bonding have been omitted.

(I)

Crystal data	
$C_{13}H_{10}CIN_3O_2$	$F_{000} = 1136$
$M_r = 275.69$	$D_{\rm x} = 1.476 \ {\rm Mg \ m^{-3}}$
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 2236 reflections
a = 9.792 (2) Å	$\theta = 2.6 - 24.5^{\circ}$
b = 23.358 (3) Å	$\mu = 0.31 \text{ mm}^{-1}$
c = 10.926 (2) Å	T = 298 K
$\beta = 96.848 \ (2)^{\circ}$	Block, yellow
$V = 2481.2 (8) \text{ Å}^3$	$0.30\times0.30\times0.27~mm$
Z = 8	

Data collection

Bruker SMART CCD area-detector diffractometer	5342 independent reflections
Radiation source: fine-focus sealed tube	3193 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.042$
T = 298 K	$\theta_{\rm max} = 27.0^{\circ}$
ω scans	$\theta_{\min} = 1.7^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -12 \rightarrow 12$
$T_{\min} = 0.913, T_{\max} = 0.921$	$k = -29 \rightarrow 27$
14387 measured reflections	$l = -12 \rightarrow 13$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.049$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.115$	$w = 1/[\sigma^2(F_o^2) + (0.0466P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$

<i>S</i> = 1.01	$(\Delta/\sigma)_{max} < 0.001$
5342 reflections	$\Delta \rho_{max} = 0.22 \text{ e} \text{ Å}^{-3}$
351 parameters	$\Delta \rho_{min} = -0.24 \text{ e } \text{\AA}^{-3}$
2 restraints	Extinction correction: none
Primary atom site location: structure-invariant direct	

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cl1	-0.31666 (7)	0.15824 (3)	0.49570 (7)	0.0648 (2)
Cl2	0.67723 (7)	-0.10226 (3)	0.57393 (6)	0.0648 (2)
N1	0.28860 (19)	0.22587 (8)	0.70899 (16)	0.0414 (5)
N2	0.4128 (2)	0.20261 (8)	0.75424 (18)	0.0421 (5)
N3	0.7948 (2)	0.13722 (8)	0.92250 (17)	0.0438 (5)
N4	0.29718 (18)	0.00154 (8)	0.94498 (16)	0.0387 (4)
N5	0.2156 (2)	-0.01091 (8)	1.03441 (16)	0.0402 (5)
N6	-0.0434 (2)	-0.04219 (10)	1.3111 (2)	0.0659 (6)
01	0.13564 (17)	0.31528 (6)	0.65672 (16)	0.0520 (4)
H1	0.2075	0.2981	0.6784	0.078*
02	0.50725 (19)	0.29034 (7)	0.76057 (19)	0.0755 (6)
O3	0.39503 (17)	0.07872 (6)	0.81707 (15)	0.0486 (4)
H3	0.3484	0.0658	0.8682	0.073*
O4	0.17570 (18)	0.08396 (7)	1.05029 (15)	0.0598 (5)
C1	0.0545 (2)	0.21766 (9)	0.63088 (19)	0.0368 (5)
C2	0.0344 (2)	0.27712 (9)	0.62187 (19)	0.0394 (5)
C3	-0.0937 (3)	0.29868 (10)	0.5765 (2)	0.0496 (6)
H3A	-0.1072	0.3381	0.5715	0.059*
C4	-0.2008 (3)	0.26227 (11)	0.5390 (2)	0.0504 (6)
H4	-0.2865	0.2770	0.5088	0.060*
C5	-0.1810 (2)	0.20380 (10)	0.5461 (2)	0.0438 (6)
C6	-0.0555 (2)	0.18151 (10)	0.59222 (19)	0.0415 (6)
H6	-0.0439	0.1420	0.5977	0.050*
C7	0.1862 (2)	0.19285 (10)	0.6792 (2)	0.0411 (6)
H7	0.1957	0.1534	0.6882	0.049*
C8	0.5195 (2)	0.23961 (10)	0.7816 (2)	0.0444 (6)

С9	0.6530 (2)	0.21501 (9)	0.83757 (19)	0.0359 (5)
C10	0.7653 (3)	0.25086 (10)	0.8548 (2)	0.0483 (6)
H10	0.7567	0.2890	0.8304	0.058*
C11	0.8900 (3)	0.23037 (11)	0.9080 (2)	0.0585 (7)
H11	0.9658	0.2545	0.9224	0.070*
C12	0.9001 (3)	0.17355 (11)	0.9395 (2)	0.0509 (6)
H12	0.9849	0.1597	0.9746	0.061*
C13	0.6739 (2)	0.15881 (9)	0.8743 (2)	0.0425 (6)
H13	0.5985	0.1343	0.8649	0.051*
C14	0.4402 (2)	-0.02227 (9)	0.79497 (18)	0.0357 (5)
C15	0.4588 (2)	0.03497 (9)	0.7643 (2)	0.0380 (5)
C16	0.5456 (2)	0.04896 (10)	0.6773 (2)	0.0476 (6)
H16	0.5579	0.0872	0.6572	0.057*
C17	0.6134 (2)	0.00709 (10)	0.6205 (2)	0.0464 (6)
H17	0.6724	0.0169	0.5632	0.056*
C18	0.5936 (2)	-0.04957 (10)	0.6489 (2)	0.0446 (6)
C19	0.5080 (2)	-0.06441 (9)	0.7344 (2)	0.0414 (6)
H19	0.4951	-0.1028	0.7523	0.050*
C20	0.3537 (2)	-0.03840 (9)	0.88893 (19)	0.0395 (5)
H20	0.3400	-0.0767	0.9076	0.047*
C21	0.1567 (2)	0.03509 (10)	1.0846 (2)	0.0419 (6)
C22	0.0660 (2)	0.02299 (9)	1.18211 (19)	0.0401 (5)
C23	0.0067 (3)	0.06862 (11)	1.2362 (2)	0.0538 (7)
H23	0.0236	0.1059	1.2124	0.065*
C24	-0.0774 (3)	0.05834 (13)	1.3256 (2)	0.0651 (8)
H24	-0.1193	0.0885	1.3624	0.078*
C25	-0.0986 (3)	0.00294 (14)	1.3595 (2)	0.0657 (8)
H25	-0.1554	-0.0034	1.4206	0.079*
C26	0.0382 (3)	-0.03068 (10)	1.2238 (2)	0.0542 (7)
H26	0.0790	-0.0616	1.1887	0.065*
Н5	0.206 (3)	-0.0477 (5)	1.053 (2)	0.080*
H2	0.411 (3)	0.1663 (5)	0.779 (2)	0.080*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0444 (4)	0.0649 (5)	0.0827 (5)	-0.0128 (3)	-0.0025 (4)	0.0037 (4)
Cl2	0.0697 (5)	0.0567 (4)	0.0709 (5)	0.0172 (4)	0.0197 (4)	-0.0037 (3)
N1	0.0369 (12)	0.0387 (11)	0.0479 (11)	0.0041 (9)	0.0020 (9)	0.0047 (9)
N2	0.0351 (12)	0.0342 (11)	0.0552 (12)	0.0012 (9)	-0.0016 (10)	0.0047 (9)
N3	0.0362 (12)	0.0371 (11)	0.0574 (13)	0.0001 (9)	0.0023 (10)	0.0029 (9)
N4	0.0374 (12)	0.0354 (11)	0.0432 (11)	-0.0026 (9)	0.0048 (9)	0.0047 (9)
N5	0.0422 (12)	0.0333 (11)	0.0465 (11)	0.0001 (9)	0.0116 (10)	0.0040 (9)
N6	0.0726 (17)	0.0628 (15)	0.0674 (15)	0.0088 (13)	0.0299 (13)	0.0101 (12)
01	0.0514 (11)	0.0317 (9)	0.0697 (11)	-0.0002 (8)	-0.0060 (10)	0.0021 (8)
O2	0.0604 (13)	0.0346 (11)	0.1240 (16)	-0.0032 (9)	-0.0194 (12)	0.0196 (10)
O3	0.0549 (11)	0.0292 (9)	0.0649 (11)	-0.0015 (8)	0.0206 (9)	0.0034 (7)
O4	0.0713 (13)	0.0321 (10)	0.0788 (12)	0.0011 (9)	0.0205 (10)	0.0045 (9)

C1	0.0369 (14)	0.0353 (13)	0.0390 (13)	0.0020 (10)	0.0073 (10)	0.0041 (10)
C2	0.0432 (15)	0.0366 (13)	0.0387 (13)	-0.0007 (11)	0.0057 (11)	0.0002 (10)
C3	0.0506 (17)	0.0368 (14)	0.0600 (16)	0.0088 (12)	0.0013 (13)	0.0051 (11)
C4	0.0419 (16)	0.0554 (17)	0.0527 (16)	0.0080 (13)	0.0008 (12)	0.0060 (12)
C5	0.0358 (15)	0.0476 (15)	0.0481 (14)	-0.0051 (11)	0.0056 (11)	0.0018 (11)
C6	0.0430 (15)	0.0354 (13)	0.0467 (14)	-0.0024 (11)	0.0079 (11)	0.0033 (10)
C7	0.0426 (15)	0.0326 (13)	0.0482 (14)	0.0022 (11)	0.0052 (12)	0.0025 (10)
C8	0.0445 (16)	0.0353 (14)	0.0523 (15)	0.0002 (11)	0.0012 (12)	0.0038 (11)
C9	0.0376 (14)	0.0289 (12)	0.0410 (12)	-0.0028 (10)	0.0042 (10)	-0.0003 (9)
C10	0.0498 (17)	0.0308 (13)	0.0635 (16)	-0.0067 (11)	0.0035 (13)	0.0037 (11)
C11	0.0433 (16)	0.0477 (16)	0.0815 (19)	-0.0131 (13)	-0.0043 (14)	0.0003 (14)
C12	0.0367 (15)	0.0520 (17)	0.0625 (16)	0.0016 (12)	0.0000 (12)	0.0000 (12)
C13	0.0338 (14)	0.0358 (13)	0.0571 (15)	-0.0048 (11)	0.0027 (12)	0.0019 (11)
C14	0.0332 (13)	0.0330 (12)	0.0399 (13)	-0.0017 (10)	-0.0006 (10)	0.0050 (10)
C15	0.0335 (13)	0.0355 (13)	0.0444 (13)	-0.0027 (10)	0.0020 (11)	0.0005 (10)
C16	0.0530 (16)	0.0365 (14)	0.0542 (15)	-0.0072 (12)	0.0097 (13)	0.0051 (11)
C17	0.0454 (16)	0.0496 (15)	0.0457 (14)	-0.0044 (12)	0.0121 (12)	0.0040 (12)
C18	0.0449 (15)	0.0427 (14)	0.0455 (14)	0.0065 (11)	0.0029 (12)	0.0007 (11)
C19	0.0445 (15)	0.0330 (13)	0.0459 (13)	0.0020 (11)	0.0025 (11)	0.0062 (10)
C20	0.0417 (14)	0.0281 (12)	0.0482 (14)	-0.0016 (10)	0.0037 (11)	0.0049 (10)
C21	0.0393 (14)	0.0365 (14)	0.0484 (14)	-0.0008 (11)	-0.0004 (11)	-0.0002 (11)
C22	0.0367 (14)	0.0385 (14)	0.0439 (13)	0.0042 (10)	0.0005 (11)	-0.0027 (10)
C23	0.0542 (17)	0.0453 (15)	0.0622 (17)	0.0041 (13)	0.0073 (14)	-0.0108 (12)
C24	0.0600 (19)	0.068 (2)	0.0687 (19)	0.0135 (15)	0.0139 (15)	-0.0213 (15)
C25	0.0514 (18)	0.094 (2)	0.0538 (17)	0.0100 (17)	0.0166 (14)	-0.0020 (16)
C26	0.0606 (18)	0.0439 (16)	0.0619 (16)	0.0083 (13)	0.0230 (14)	-0.0006 (12)

Geometric parameters (Å, °)

Cl1—C5	1.740 (2)	С7—Н7	0.9300
Cl2—C18	1.736 (2)	C8—C9	1.491 (3)
N1—C7	1.276 (3)	C9—C10	1.376 (3)
N1—N2	1.369 (2)	C9—C13	1.381 (3)
N2—C8	1.361 (3)	C10-C11	1.375 (3)
N2—H2	0.892 (10)	С10—Н10	0.9300
N3—C12	1.332 (3)	C11—C12	1.372 (3)
N3—C13	1.336 (3)	C11—H11	0.9300
N4—C20	1.278 (3)	C12—H12	0.9300
N4—N5	1.365 (2)	C13—H13	0.9300
N5—C21	1.365 (3)	C14—C15	1.396 (3)
N5—H5	0.891 (10)	C14—C19	1.397 (3)
N6—C25	1.324 (3)	C14—C20	1.456 (3)
N6—C26	1.342 (3)	C15—C16	1.388 (3)
O1—C2	1.354 (3)	C16—C17	1.371 (3)
O1—H1	0.8200	С16—Н16	0.9300
O2—C8	1.210 (2)	C17—C18	1.378 (3)
O3—C15	1.361 (2)	С17—Н17	0.9300
O3—H3	0.8200	C18—C19	1.373 (3)
O4—C21	1.223 (2)	С19—Н19	0.9300

C1—C6	1.394 (3)	С20—Н20	0.9300
C1—C2	1.405 (3)	C21—C22	1.493 (3)
C1—C7	1.455 (3)	C22—C26	1.372 (3)
C2—C3	1.387 (3)	C22—C23	1.380 (3)
C3—C4	1.375 (3)	C23—C24	1.372 (3)
С3—НЗА	0.9300	С23—Н23	0.9300
C4—C5	1.380 (3)	C24—C25	1.369 (4)
C4—H4	0.9300	C24—H24	0.9300
C5—C6	1.374 (3)	С25—Н25	0.9300
С6—Н6	0.9300	С26—Н26	0.9300
C7—N1—N2	119.29 (19)	N3—C12—C11	123.3 (2)
C8—N2—N1	116.92 (19)	N3—C12—H12	118.3
C8—N2—H2	125.2 (17)	C11—C12—H12	118.3
N1—N2—H2	116.2 (18)	N3—C13—C9	124.5 (2)
C12—N3—C13	116.7 (2)	N3—C13—H13	117.7
C20—N4—N5	120.75 (18)	С9—С13—Н13	117.7
C21—N5—N4	115.52 (18)	C15—C14—C19	118.6 (2)
C21—N5—H5	127.1 (17)	C15—C14—C20	121.4 (2)
N4—N5—H5	117.4 (17)	C19—C14—C20	120.05 (19)
C25—N6—C26	115.5 (2)	O3—C15—C16	117.57 (19)
C2—O1—H1	109.5	O3—C15—C14	122.55 (19)
С15—О3—Н3	109.5	C16—C15—C14	119.9 (2)
C6—C1—C2	118.8 (2)	C17—C16—C15	120.7 (2)
C6—C1—C7	119.2 (2)	С17—С16—Н16	119.6
C2—C1—C7	122.0 (2)	C15—C16—H16	119.6
O1—C2—C3	117.5 (2)	C16—C17—C18	119.7 (2)
O1—C2—C1	122.7 (2)	С16—С17—Н17	120.2
C3—C2—C1	119.8 (2)	С18—С17—Н17	120.2
C4—C3—C2	120.5 (2)	C19—C18—C17	120.6 (2)
С4—С3—Н3А	119.8	C19—C18—Cl2	120.18 (18)
С2—С3—НЗА	119.8	C17—C18—Cl2	119.23 (18)
C3—C4—C5	119.9 (2)	C18—C19—C14	120.5 (2)
C3—C4—H4	120.1	С18—С19—Н19	119.7
С5—С4—Н4	120.1	С14—С19—Н19	119.7
C6—C5—C4	120.6 (2)	N4—C20—C14	118.06 (19)
C6—C5—Cl1	120.01 (19)	N4—C20—H20	121.0
C4—C5—Cl1	119.37 (19)	C14—C20—H20	121.0
C5—C6—C1	120.4 (2)	O4—C21—N5	121.7 (2)
С5—С6—Н6	119.8	O4—C21—C22	121.3 (2)
С1—С6—Н6	119.8	N5-C21-C22	116.94 (19)
N1—C7—C1	119.2 (2)	C26—C22—C23	116.9 (2)
N1—C7—H7	120.4	C26—C22—C21	124.6 (2)
С1—С7—Н7	120.4	C23—C22—C21	118.4 (2)
O2—C8—N2	121.6 (2)	C24—C23—C22	119.3 (2)
O2—C8—C9	121.2 (2)	С24—С23—Н23	120.4
N2—C8—C9	117.3 (2)	С22—С23—Н23	120.4
C10—C9—C13	116.8 (2)	C25—C24—C23	118.8 (2)
C10—C9—C8	117.9 (2)	C25—C24—H24	120.6
С13—С9—С8	125.3 (2)	C23—C24—H24	120.6

C11—C10—C9	120.0 (2)	N6-C25-C24	124.2 (3)
C11—C10—H10	120.0	N6-C25-H25	117.9
С9—С10—Н10	120.0	С24—С25—Н25	117.9
C12—C11—C10	118.5 (2)	N6-C26-C22	125.3 (2)
C12—C11—H11	120.8	N6—C26—H26	117.4
C10-C11-H11	120.8	С22—С26—Н26	117.4
C7—N1—N2—C8	178.3 (2)	C8—C9—C13—N3	178.8 (2)
C20-N4-N5-C21	-177.7 (2)	C19—C14—C15—O3	178.9 (2)
C6—C1—C2—O1	-179.7 (2)	C20-C14-C15-O3	-2.0 (3)
C7—C1—C2—O1	0.3 (3)	C19-C14-C15-C16	-1.3 (3)
C6—C1—C2—C3	0.8 (3)	C20-C14-C15-C16	177.9 (2)
C7—C1—C2—C3	-179.2 (2)	O3-C15-C16-C17	179.9 (2)
O1—C2—C3—C4	179.7 (2)	C14—C15—C16—C17	0.1 (3)
C1—C2—C3—C4	-0.7 (3)	C15-C16-C17-C18	1.0 (4)
C2—C3—C4—C5	-0.2 (4)	C16—C17—C18—C19	-0.8 (4)
C3—C4—C5—C6	1.0 (3)	C16—C17—C18—Cl2	178.62 (18)
C3—C4—C5—Cl1	-178.88 (18)	C17—C18—C19—C14	-0.5 (3)
C4—C5—C6—C1	-1.0 (3)	Cl2-C18-C19-C14	-179.87 (17)
Cl1—C5—C6—C1	178.92 (16)	C15-C14-C19-C18	1.5 (3)
C2—C1—C6—C5	0.1 (3)	C20-C14-C19-C18	-177.7 (2)
C7—C1—C6—C5	-179.9 (2)	N5-N4-C20-C14	-179.66 (18)
N2—N1—C7—C1	-179.88 (18)	C15—C14—C20—N4	-1.5 (3)
C6—C1—C7—N1	176.7 (2)	C19—C14—C20—N4	177.7 (2)
C2—C1—C7—N1	-3.3 (3)	N4—N5—C21—O4	0.5 (3)
N1—N2—C8—O2	-3.9 (3)	N4—N5—C21—C22	179.61 (18)
N1—N2—C8—C9	176.60 (18)	O4—C21—C22—C26	178.9 (2)
O2—C8—C9—C10	-5.6 (3)	N5-C21-C22-C26	-0.2 (3)
N2-C8-C9-C10	173.9 (2)	O4—C21—C22—C23	-2.0 (3)
O2—C8—C9—C13	174.2 (2)	N5-C21-C22-C23	178.9 (2)
N2—C8—C9—C13	-6.3 (3)	C26—C22—C23—C24	-1.1 (4)
C13—C9—C10—C11	-0.9 (3)	C21—C22—C23—C24	179.7 (2)
C8—C9—C10—C11	178.9 (2)	C22—C23—C24—C25	0.8 (4)
C9—C10—C11—C12	2.0 (4)	C26—N6—C25—C24	0.2 (4)
C13—N3—C12—C11	-1.3 (4)	C23—C24—C25—N6	-0.4 (4)
C10-C11-C12-N3	-0.8 (4)	C25—N6—C26—C22	-0.6 (4)
C12—N3—C13—C9	2.5 (3)	C23—C22—C26—N6	1.1 (4)
C10-C9-C13-N3	-1.3 (3)	C21-C22-C26-N6	-179.8 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!\!\!-\!\!\!\!- \!$
O1—H1…N1	0.82	1.88	2.594 (2)	145
O3—H3…N4	0.82	1.82	2.538 (2)	146
N5—H5 ^{···} N3 ⁱ	0.891 (10)	2.109 (11)	2.991 (3)	171 (2)
N2—H2···O3	0.892 (10)	2.097 (10)	2.984 (2)	173 (2)
Symmetry codes: (i) $-x+1, -y, -z+2$.				

